

Turbine Flow Meters

Precision Series LoFlo Meters

DESCRIPTION

Cox Precision LoFlo Meters are designed to provide exceptional repeatability and speed of response when measuring very low flow rates. The LoFlo meter features a cantilever axial helical rotor design and robust ceramic ball bearings. The meter design is suited for more rugged applications, where other meters are susceptible to damage derived from vibrations or shock. Additionally, the stainless steel square body facilitates 5000 psi line pressure and provides flat wrench surfaces to assist in installation and removal.

APPLICATIONS

The Cox LoFlo meter thrives in—but is not limited to—applications such as:

- Attitude and position control rocket engines
- Compatibility with exotic fuels and oxidizers, such as:
 - N204
 - UDMH
 - MMH
 - Hydrazine
 - Refrigerant
 - Blending applications
- Leak detection
- Fuel monitoring
- Batching

CALIBRATIONS

Calibrations are accomplished by using various blends of solvent and oil to simulate actual fluid conditions. For varying process temperature conditions, multiple viscosity calibrations are used to develop a universal viscosity curve. UVC calibrations enable a flow computer to track temperature and compensate for fluid viscosity. Flow Dynamics tailors calibrations to replicate process conditions, so the meter is characterized to provide the best attainable accuracy.

Calibrations are performed by our Flow Dynamics NVLAP (Lab Code 200668-0) accredited calibration facility located in Racine WI, which uses primary standard calibrators, offering uncertainties of $\pm\,0.05$ percent of reading with $\pm\,0.02$ percent repeatability. Users can be assured that Cox Precision Meters come with a best-in-class calibration traceable to NIST standards.

NVLAP accreditation applies only to the Badger Meter Flow Dynamics calibration Lab, located in Racine, WI

OPERATION

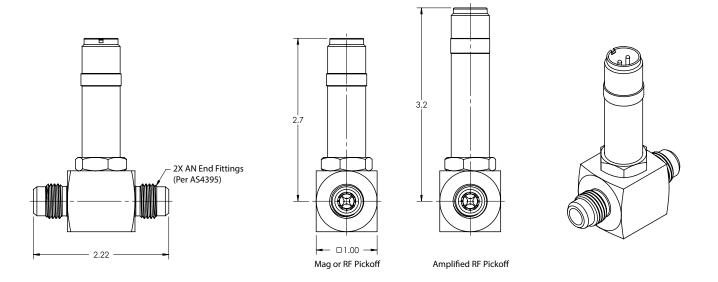
As a fluid passes through the meter, the velocity of the fluid creates rotational energy on the rotor. The rotor blades, passing through a magnetic or radio frequency field, generate pulses proportional to flow. Each pulse is transmitted to the meter electronics, where it amplifies the pulse output.

The LoFlo models are inherently nonlinear, due to their small blade geometry, but are repeatable within \pm 0.25 percent of reading. For more complex flow measurement applications, a flow processor is recommended to linearize and temperature compensate the flow meter output. Because each application differs in the type of fluid and operating temperature range, the actual linearity and temperature compensation results will vary. Our experienced application engineers can recommend the flow meter model and calibration parameters to obtain the best accuracy possible. Temperature fluid viscosity compensation, to include the meter bore diameter using thermal expansion coefficients, are achieved by means of Strouhal-Roshko equations.

SPECIFICATIONS

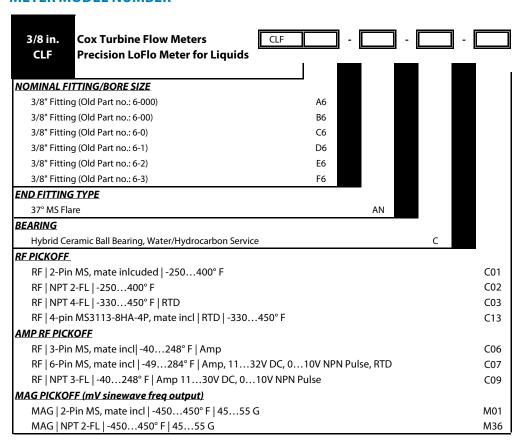
Performance	Repeatability	\pm 0.25% of reading		
	Calibrator uncertainty	$\pm0.05\%$ of reading		
	Frequency output	1500 1800 Hz (Maximum)		
	Response time	2030 ms or better (at 1.2 cSt)		
	Pressure rating	5000 psi (4 times less than burst)		
Materials of Construction	Body	316 stainless steel		
	Shafts	316 stainless steel		
	Rotors	17-4 PH stainless steel		
	Bearing	Ceramic ball		

Flow Range


	Flow Range (10:1 flow Ratio)		Extended Flow Range*		Maximum	ΔΡ **
Size	gpm (lpm)	lb/hr (kg/hr)	gpm (lpm)	lb/hr (kg/hr)	Frequency (Hz)	PSID (kg/cm²)
6-000	0.0070.075	2.85028.50	0.0060.075	2.20028.50	1800	20.0
0-000	(0.027 0.284)	(1.29012.90)	(0.024 0.284)	(0.998 12.90)		(1.4)
6-00	0.0120.125	4.75047.50	0.0090.125	3.40047.50	1800	12.0
0-00	(0.0450.473)	(2.15021.50)	(0.0340.473)	(1.54021.50)		(0.84)
6-0	0.0250.250	9.50095.00	0.0140.250	5.40095.00	1800	4.50
0-0	(0.0950.946)	(4.31043.10)	(0.0530.946)	(2.45043.10)		(0.32)
6-1	0.0500.500	19.00190.0	0.0230.500	8.800190.0	1500	4.00
0-1	(0.1891.890)	(8.62086.20)	(0.0871.890)	(3.99086.20)		(0.28)
6.3	0.0750.750	28.50285.0	0.0370.750	13.20285.0	1500	4.50
6-2	(0.2842.840)	(12.90129.0)	(0.1402.890)	(5.990129.0)		(0.32)
6.3	0.1251.250	47.50475.0	0.0601.250	22.00475.0	1350	7.00
6-3	(0.4734.730)	(21.50215.0)	(0.2274.730)	(9.980215.0)		(0.49)

^{*} With use of RF (Carrier) Pickoff

DIMENSIONS


The dimension from the center of bore to top of pickoff represents the most common pickoff types. Length may vary depending on pickoff choice. Consult factory for details.

NOTE: Dimensions below are shown in inches.

^{**}Pressure drop is based on liquid with a specific gravity of 0.76 and 1.12 cSt viscosity, at maximum frequency

METER MODEL NUMBER

NOTE: Meters are available with signal conditioners or flow computers, and can be calibrated using water, solvent or oil blends.

